If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5f^2+5f-9=0
a = 5; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·5·(-9)
Δ = 205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{205}}{2*5}=\frac{-5-\sqrt{205}}{10} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{205}}{2*5}=\frac{-5+\sqrt{205}}{10} $
| q-3=76 | | 2^(5x+4)-1=7 | | 1/8x=37 | | 7x-3=-63 | | 8y-4(3y+5)=8-(10+10y) | | 36=0.5(3x+12)(x+2) | | 3+3x=18-4x | | -4(9+d)=-2(-2-2d) | | 10-6x+12=2x+22-8x | | 150+(4x-6)=180 | | 3x-2x-1=0 | | )3t−18=4(−3−43 t) | | 4x-4=12+.25x | | -3-5u=5u-3 | | 3/5+b=-1/4 | | 3x-60=40-x | | 4-9x=88 | | 32v=1 | | 2t+8+1+2t-t=11 | | My/4+2=8 | | 2(2x-3)+3x=57 | | Y=-3x^2+15x+72 | | 10x=5x+20 | | 3x=x+3-5x | | 80-x-10=40 | | 2+2x3=0 | | -3u-5u=5u-3 | | 1/8x+3=7 | | -18u-5u=-4u | | G(x)=-3x^2+15x+72 | | 38=6(y+5)-4y | | 7.75*x=72 |